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Abstract—With the rapid development of deep learning tech-
nology, the modern internet-of-things (IoT) cameras have very
high demands on communication, computing, and memory re-
sources so as to achieve low latency and high accuracy live video
analytics. Thanks to mobile edge computing (MEC), intelligent
offloading to the MEC nodes can bring a lot of benefits, especially
when the decomposable pipeline is adopted in the cloud-edge
architecture. In this paper, we provide Decomposable Intelligence
on a Cloud-Edge IoT (DICE-IoT) framework to support joint
latency- and accuracy- aware live video analytic services. Specif-
ically, the intelligent framework enables the pipeline sharing
mechanism to reduce MEC resource usage. A Nash bargain-
ing is proposed to incentivize cooperative computing provision
between the MEC and the cloud, and a Generalized Benders
Decomposition (GBD) based approach is utilized to optimize the
social welfare. The results show that the proposed DICE-IoT
framework can achieve a win-win-win solution to the IoT device,
the MEC, and the cloud stratums.

Index Terms—Live video analytics, mobile edge computing,
joint resource allocation, Nash bargaining

I. INTRODUCTION

Real-time video analytics in the city-wide area is a critical
function in public safety applications, such as violence de-
tection, traffic monitoring, self-driving, VR/AR, etc [1]. Such
a function is expected to be realized by the modern Internet
of Things (IoT) based surveillance system. In recent years,
by leveraging powerful deep learning (DL) technology, the
detection accuracy of computer vision and video analytics has
been dramatically improved, which makes live video analytics
becomes possible at the software level. Nevertheless, it is
still challenging to implement a DL-based real-time video
analytic service due to computing resources, bandwidth, and
latency constraints. In conventional IoT systems, the live
video sequences are captured from surveillance cameras and
delivered to the remote cloud for video analytics, which has
very large bandwidth demands [2]. In addition, performing the
DL model requires large GPU and memory resources, which
are not available at the IoT devices and thus need the assistance
of the cloud. However, high latency is inevitable due to the
network congestion and long-distance transmissions from the
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end device to the cloud. Traditional cloud-based solutions,
even with the support of 5G, is not sufficient for the live video
analytic services.

Different from some improved solutions to the cloud com-
puting, i.e., heterogeneous cloud [3] or cloudlet [4], mobile
edge computing (MEC) distributes a substantial number of
capabilities closer to the IoT devices, i.e., communication,
computing, storage, and control [5, 6]. For live video ana-
lytics, intelligent offloading to the MEC nodes [7] can allevi-
ate network congestion, reduce latency, and lower operating
costs. However, a complete DL model may be impossible
to be loaded in a MEC node equipped with limited GPU
memory. Fortunately, the decomposable pipeline brings new
opportunities by leveraging cloud-edge architecture. The layer-
level pipeline composition partitions the entire DL model into
multiple DL sub-models so that they could be deployed in
MEC nodes and remote cloud separately [8]. As a result, an
optimal partition of a particular DL model could be observed
offline, which yields less total inference delays comparing
with MEC-only and cloud-only schemes. Besides, an infer-
ence pipeline for video analytics usually consists of multiple
detection models and therefore a well-designed model-level
pipeline composition may bring benefits [9]. For example,
the best composition of a video monitoring pipeline in some
cases could be to apply YOLOv3 [10] at the MEC node for
object detection and further employ FaceNet [11] at the remote
cloud for face recognition. In addition, recent studies expose
that there exists a resource-quality tradeoff when selecting
a combination of knobs for video analytics, which contains
video resolution, frame sampling rate, and specific analytic
model [12, 13]. That is to say, a suitable configuration of
various knobs can relief resource consumption subject to the
desired accuracy requirement.

A rich set of resource allocation solutions [8, 12, 14–16]
have been proposed to deploy live video analytics in MEC
environments. However, most of the current solutions may
not be practical enough to the real-world service deployments
due to several aspects: 1) Both communication and computing
resource allocations are urgent issues to meet the high quality
of service (QoS) demands. For simplicity, some work [8]
assumes that the link bandwidth has been reserved, which
greatly reduces the value and difficulty of the problem. 2) Both
computing and memory resources limit the capacity of analytic
services, especially when advanced DL technology is applied.
But most of the works ignore the importance of memories
and only target at computing resources in terms of CPU
core [12], processor speed [14, 15], even a more simplified
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formulation as resource capacity [16]. 3) Low latency and
high accuracy video analytics, which are pressing demands
for a modern IoT-based surveillance system, have never been
jointly considered. Therefore, it is necessary to address a
joint resource allocation problem with multi-type resources
subject to both latency and accuracy requirements for live
video analytics.

In this paper, we propose Decomposable Intelligence on
a Cloud-Edge IoT (DICE-IoT) framework to provide joint
latency- and accuracy- aware live video analytics to the IoT-
based surveillance cameras called webcams. In the proposed
intelligent framework, the MEC stratum consisting of several
MEC nodes is controlled by a MEC orchestrator, while the
cloud stratum with an unlimited resource budget is managed
by a cloud controller. We consider multi-type resources when
performing a specific decomposable pipeline, including link
bandwidth, GPU utilization, and memory. Due to the limited
computing capacities and memory resources of MEC nodes,
we share a similar idea of [16] that allows pipeline sharing for
multiple webcams. As the MEC orchestrator, the objective is
to maximize the expected utility of the MEC stratum with opti-
mal bandwidth allocation and computing provision, where the
latter consists of user association and configuration selection.
It is worth noting that the proposed decomposable intelligence
is not limited to live video analytic applications. By modifying
a part of variables or constraints, e.g., without considering
video resolution, it still can be applied to general cloud-edge
IoT framework with joint latency and accuracy concerns. The
original contributions of this paper are summarized as follows:

• Recall that it is necessary to address a joint resource allo-
cation problem with multi-type resources subject to both la-
tency and accuracy requirements for live video analytics. In
this paper, we present a practical cloud-edge IoT framework
to intelligently provide decomposable live video analytics
with joint latency and accuracy awareness. Specifically,
multi-type resources (i.e., link bandwidth, GPU utilization,
and memory) are considered in the joint resource allocation
of network and computing demands. A pipeline sharing
mechanism is enabled for GPU memory usage reduction.

• It is expected that MEC resources will be deployed by the
network operator, which will be different from the cloud
operator. Conflicts of interests may arise in the cloud-edge
computing provision. We propose a Nash bargaining with
price negotiation between the MEC orchestrator and the
cloud controller to incentivize the cloud stratum for coopera-
tive cloud-edge computing provision. Unlike the most of the
related works, which applies greedy or heuristic approaches
to deal with mixed-integer nonlinear programming problem
(MINLP), we utilize the reformulation linearization tech-
nique (RLT) to resolve the difficulty of the joint resource
allocation problem and then provide Generalized Benders
Decomposition (GBD) based approach for optimal social
welfare calculation.

• We take a decomposable inference pipeline consisting of
object detection and face recognition as an application
example to evaluate the proposed DICE-IoT framework.
We not only set up a practical experimental testbed for pa-

rameter measurement but also conduct extensive numerical
simulations. The results show that the proposed intelligent
framework achieves a win-win-win solution to the IoT
device, the MEC, and the cloud stratums thanks to the
proposed pipeline sharing mechanism and the cooperative
computing provision. The proposed GBD-based approach
can greatly reduce the execution time compared with the
greedy approach.
The rest of the paper is organized as follows. We summarize

related works in Section II. The proposed DICE-IoT frame-
work is presented in Section III, and then a joint resource
allocation problem is raised in Section IV to provide video
analytic services subject to low latency and high accuracy
requirements. Furthermore, we provide a Nash bargaining in
Section V to incentivize cooperative cloud-edge framework
and then propose a GBD-based social welfare calculation in
Section VI. Section VII shows our evaluation results and,
finally, Section VIII concludes this work.

II. RELATED WORK

When integrating the advanced MEC technologies into live
video analytics, decomposable pipeline [1, 8, 9, 17] has great
potential to exploit the advantages of the edge computing
environments. The distributed intelligent video surveillance
(DIVS) system [1] shares a similar idea of [8] that enables
parallel training, model synchronization, and workload bal-
ancing through distributed DL sub-models deployed on the
MEC nodes. Four representative prediction pipelines in the
model-level composition are provided in [9], including image
processing, video monitoring, social media prediction, and
TensorFlow cascade. Besides, a proactive pipeline optimizer
is deployed to satisfy the end-to-end latency and a reactive
controller is provided to monitor the per-model configuration
at runtime. Besides, frequent reconfiguration [17] of model-
level pipelines composition is required because of dynamic
topology changes caused by the user’s mobility, i.e., users
move between edges, as well as the switching of active
applications.

QoS-based resource allocation is the main challenge when
deploying a live video analytics system. So far, a lot of
resource allocation solutions [8, 12, 14–16, 18] have been
proposed to satisfy the pressing demands of live video an-
alytics. In order to maximize the overall QoS of multi-access
point (AP) wireless camera networks, a joint deployment and
association [18] are provided to determine suitable locations of
APs and then the camera-AP association as well as the video
stream transmission rate. For the application of Automated Li-
cense Plate Recognition (ALPR), the offloading task selection
and bandwidth allocation [14] are proposed for each single
edge node to minimize the latency of video analytics. In a
single camera system, a cooperative video processing scheme
[15] is proposed to offload video chunks to multiple edge-
capable groups nearby. In order to minimize the average video
coding rate, group formulation and video–group matching are
addressed sequentially using greedy and low-complex heuristic
algorithms, respectively.

To overcome the insufficient resources equipped at mobile
devices and push the workload of mobile deep learning ap-



3

TABLE I
A COMPARISION OF RELATED WORK IN THE LITERATURE

Reference Architecture
Resource Required Pipeline

Proposed methods
allocation metrics sharing

[8] Edge + Cloud C D × B Event-triggered online schedule algorithm
[12] Edge C D, Q × B Greedy approximation with high-value query
[14] Edge + Cloud N, C D × B Continuous relaxation & exhaustive search (optimal)
[15] Edge C D, Q × B Greedy group formation & Video-group matching

[16] Edge + Cloud N, C Q © B Multiple-choice multi-dimensional knapsack problem
(MMK) & greedy-based heuristic approach

[18] × N D × B 1) Branch-and-bound (optimal) 2) Iterative heuristics
Our work Edge + Cloud N, C, M D, Q © B Nash Bargaining & GBD-based approach (optimal)
Hints: with = © w/o = × N = Network C = Computing M = Memory

D = Delay Q = Accuracy optimal = Optimal solution

plications to the near-end edge instead of the remote cloud,
a layer-level pipeline composition [8] is presented to partition
AlexNet so as to yield shorter total delay for edge inference
tasks. However, it assumes that the link bandwidth has been
reserved and each mobile task has its private pipeline. By
contrast, our proposed DICE-IoT system not only considers
the bandwidth allocation problem but also allows pipeline
sharing for multiple IoT cameras if possible. In VideoStorm
architecture [12], a greedy but efficient profiler is employed to
pick a handful of knob configurations. To improve near-future
performance, query lag is predicted at the scheduler and two
objectives, maximizing the sum of utilities and maximizing
minimum utility, are formulated, where the utility is defined
as the weighted sum of quality improvement and lag reduction.
Note that the worker in this system acts as a MEC node and
the remote cloud is not considered. Furthermore, they only
consider single resource type, i.e., CPU resource, while our
proposed DICE-IoT system aims at a more complicated joint
resource allocation problem.

The VideoEdge framework [16], which is state-of-the-art
work, provides a joint resource allocation of network and com-
puting demands for video analytics using a heuristic approach.
However, the latency of the analytic task is not considered; the
computing resource is simply formulated as resource capacity;
the network links between cameras and the local private
clusters are not discussed. More specifically, a query planning
is applied to select the best knob configuration for a query
and a component placement is used to determine the locations
of pipeline components according to the available resource
capacities. Furthermore, component merging is considered to
eliminate redundant components due to insufficient network
or computing resources. Unlike our proposed pipeline sharing
mechanism, only those common components from multiple
queries of the same camera are allowed to merge. Besides,
the VideoEdge framework controls only the frame resolution
while our proposed framework supports a list of decomposable
pipelines by considering different video resolution, frame sam-
pling rate, and analytic models. Compared with the heuristic
approach of the VideoEdge framework, our proposed frame-
work provides an optimal solution for bandwidth allocation
and computing provision. Finally, a comparison of related
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Fig. 1. The proposed DICE-IoT architecture for live video analytics.

work in the literature is listed in Table I. It shows that most
of the current solutions have more or less weaknesses in
joint resource allocation, required metrics, and the proposed
methods while our work provides an optimal solution in a
cloud-edge architecture by compensating those weaknesses.

III. SYSTEM MODEL

The hierarchical DICE-IoT architecture is presented in Fig.
1. We consider a MEC stratum, which consists a number
of MEC nodes M = {1, · · · , |M|} controlled by a MEC
orchestrator. Each MEC node j ∈ M is equipped with
limited memory and computing resources. A cloud stratum
at the far end owns a large number of server racks, which
are independently managed by a cloud controller. Generally,
we assume that the cloud stratum has an unlimited resource
budget. Under the proposed architecture, there are IoT-based
surveillance cameras N = {1, · · · , |N |}, called webcams,
fixed in the IoT device stratum that captures live video
sequences and then upload to the MEC stratum for real-time
video analytics, e.g., object detection and face recognition.
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In the MEC stratum, those analytic results could be furthered
used for control and management, e.g., security alarm. Specif-
ically, each webcam i ∈ N has its own latency requirement
Lreqi and quality requirement Qreqi in terms of detection ac-
curacy. Unlike conventional cloud computing architecture, the
proposed system leverages the power of the MEC stratum for
latency reduction, i.e., communication delay and computing
delay, so as to satisfy the latency requirement and meanwhile
achieve high detection accuracy. However, due to the limited
computing capacities and memory resources of MEC nodes,
it is further encouraged to negotiate with the cloud controller
for cooperative computing provisioning deployment.

A. Network and Communication Model

We assume that the webcams are within the range of some
base stations (BSs) K = {1, · · · , |K|} so that they can upload
the video streams through the wireless channels. The backhaul
network is modeled as a mesh network connecting BSs and
MEC nodes and the cloud by dedicated high-speed wired fiber
with fixed capacities. That is, each BS is physically connected
to some MEC nodes and all MEC nodes have their dedicated
backhaul links to the cloud. In this way, the near-end network
can be represented by a directed graph G(V,L) where V
includes the set of MEC nodes M, the set of BSs K, and
the set of webcams N . The L comprised of wired Lwd and
wireless links Lwl.

1) Wired link: The achievable backhaul capacity of the
wired link lkj ∈ Lwd between BS k ∈ K is denoted by
rkj . The achievable backhaul capacity between MEC node j
and the cloud is denoted by rj,cld. Each wired link is equally
shared for video stream transmissions between both ends.

2) Wireless link: We assume that each webcam i is con-
nected to its nearest BS k, denoted by lik ∈ Lwl. The BS k has
total Wk (in MHz) radio spectrum for wireless transmissions.
Note that the interference management and power allocation
are not the main goal of this paper, we assume that there is not
inter-BS interference and fixed transmission power is adopted.
According to the Shannon bound, the spectrum efficiency of
wireless link lik is expressed as

γik = log2

(
1 +

ρigik
σ2
k

)
, (1)

where ρi is the transmission power of webcam i, gik is the
channel gain between webcam i and BS k, and σ2

k is the
power spectrum density of additive white Gaussian noise at
BS k. Specifically, we do not consider the small-scale fading
when modeling the SNR in this paper, which leads a stochastic
optimization problem [19].

B. Computing Model

We know that video analytics could be processed by classi-
cal computer vision methods as well as deep neural networks
(DNN). In the proposed DICE-IoT system, we assume that
different decomposable inference pipelines could be performed
at the cloud-edge framework to analyze the video streams
uploaded by the webcams by either layer-level or model-
level pipeline compositions. Here we introduce an available

TABLE II
IMPORTANT PARAMETERS OF CONFIGURATION φ

Notation Definition
frφ Frame sampling rate
rsφ Video resolution rsφ = wφ × hφ
wφ, hφ Frame {width, height}
ϕφ Partial offloading indicator to the cloud
bφ, bφcld Per frame data size {uploaded from a webcam to a

MEC node, output from a MEC node to the cloud}
tφj , tφcld Per frame processing time at {MEC node j, the

cloud}
pφj , pφcld Per frame power consumption at {MEC node j, the

cloud}
uφj , uφcld GPU utilization at {MEC node j, the cloud}
mφ
j GPU memory usage at MEC node j

qφ Detection accuracy

configuration set Φ = {φ}, where each specific decomposable
pipeline φ is regarded as a configuration. For configuration
φ, we denote its video resolution as rsφ = wφ × hφ and
frame sampling rate as frφ (in fps), where wφ and hφ are
input frame width and height to configuration φ, respectively.
We introduce a binary indicator ϕφ, that is, ϕφ = 1 if the
video analytic task is partially/fully offloaded to the remote
cloud. Otherwise, the full video analytic task is processed
in the MEC stratum. Furthermore, we define a complete
configuration set ΦU (rsφ, frφ, ϕφ), which consists a full list
of available configurations in the proposed system. Therefore,
the isolated configuration set of the MEC stratum without any
interaction with the cloud stratum is

Φmec = {φ : ϕφ = 0,∀φ ∈ ΦU}. (2)

In the rest of the paper, the available configuration set Φ
can be assigned to either ΦU or Φmec according to different
optimization problems.

The configuration selection impacts resource consumption,
latency, and accuracy of the video analytics [13]. We list
important parameters of configuration φ in Table II. The
average value of those parameters could be measured with
specific MEC node j from offline empirical analysis. Besides,
we assume that the power consumption is proportional to
the GPU utilization [20]. Therefore, the per frame power
consumption at MEC node j and the cloud can be calculated
by {

pφj = tφj u
φ
j (pmaxj − pidlej )

pφcld = tφcldu
φ
cld(p

max
cld − pidlecld )

, (3)

where pidlej is the power consumption in idle state of MEC
node j and pmaxj is the maximum power consumption of MEC
node j. Accordingly, pidlecld is the power consumption in the idle
state of the cloud server and pmaxcld is the maximum power
consumption of the cloud server.

IV. PROBLEM FORMULATION

To provide low latency and high accuracy video analytic
services, adequate wireless bandwidth should be allocated to
each webcam from its connecting BS and meanwhile, the
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Fig. 2. Example of the proposed joint resource allocation problem.

MEC orchestrator determines the user association from the we-
bcam to a specific MEC node, which is running a determined
computing configuration to satisfy the service requirements.
Specifically, we assume the MEC stratum is controlled by
a single MEC orchestrator trading with the cloud controller
for cooperative computing provisioning deployment. In this
paper, we aim to maximize the expected utility of the MEC
stratum by seeking the optimal bandwidth allocation and
computing provision scheme. Fig. 2 illustrates an example
adopting model-level pipeline composition, where the details
will be described in Section VII.

A. Joint Resource Allocation

1) Bandwidth allocation: The bandwidth allocation is de-
noted as a = {aik,∀i, k}, where aik is a fraction of bandwidth
allocated from BS k to webcam i. Therefore, the data rate of
webcam i is

rik = aikWkγik, ∀lik ∈ Lwl. (4)

Accordingly, we have the bandwidth allocation constraint

C1 :


I : aik = 0, ∀lik /∈ Lwl
II : aik ∈ [0, 1], ∀lik ∈ Lwl
III :

∑
i∈N

aik ≤ 1, ∀k ∈ K
. (5)

2) Computing provision: According to the network links
modeled by the graph G(V,L), the candidate MEC node set
of webcam i is

Mc
i = {j : lik ∈ Lwl ∧ lkj ∈ Lwd,∀k ∈ K,∀j ∈M}. (6)

Note that webcam i has its own accuracy requirement and it
is also equipped with some physical limitations: i) maximum
frame width wmaxi and height hmaxi , and ii) maximum frame
sampling rate frmaxi . Therefore, the candidate configuration
set of webcam i is

Φci = {φ : wφ ≤ wmaxi ∧ hφ ≤ hmaxi

∧ frφ ≤ frmaxi ∧ qφ ≥ Qreqi ,∀φ ∈ Φ}. (7)

The target of the computing provision is to determine the
configurations of MEC nodes and user association between
webcams and MEC nodes. We introduce binary variables x =
{xφij ,∀i, j, φ} as the user association decision. The xφij = 1

when webcam i is associated with MEC node j for video
analytics using configuration φ; otherwise, xφij = 0. We have
the user association constraint

C2 :



I :
∑

j∈Mc
i

∑
φ∈Φcij

xφij ≤ 1, ∀i

II :
∑

j∈M\Mc
i

∑
φ∈Φ

xφij = 0, ∀i

III :
∑
j∈M

∑
φ∈Φ\Φci

xφij = 0, ∀i

. (8)

Note that a MEC node may need to process other appli-
cations and tasks, we assume that MEC node j has available
GPU utilization uavlj and GPU memory mavl

j for video an-
alytics. In the proposed system, a MEC node is allowed to
operate multiple configuration pipelines at the same time if
it can afford sufficient computing capacities and resources.
Besides, the proposed framework allows pipeline sharing for
GPU memory usage reduction, that is, those pipelines with the
same configuration at a MEC node could be shared by multiple
webcams, as shown in Fig. 2. In this way, let n = {nφj ,∀j, φ}
represent the configuration selections of MEC nodes, where
nφj indicates that total nφj pipelines with configuration φ
are operated at MEC node j. As a webcam is served by
at most one pipeline, the number of pipelines nφj should
not exceed the number of serving webcams

∑
i∈N x

φ
ij . Due

to the limitation of available GPU utilization and memory,
nφj is bounded by Nφ

j = min{buavlj /uφj c, bmavl
j /mφ

j c, |N |},
i.e., nφj ∈ {0, 1, · · · , N

φ
j }. From the above derivations, the

configuration selection constraint is presented as

C3 :



I : nφj ≤ N
φ
j , ∀j, φ

II : nφj ≤
∑
i∈N x

φ
ij , ∀j, φ

III :
∑
φ∈Φ

nφj u
φ
j ≤ uavlj , ∀j

IV :
∑
φ∈Φ

nφjm
φ
j ≤ mavl

j , ∀j

. (9)

Note that multiple webcams share pipelines when selecting
MEC node j with configuration φ, MEC node j needs to
maintain a service queue for arrival video analytic tasks.
Therefore, we define the following constraint to guarantee its
stability of service:

C4 : frφ ·
∑
i∈N

xφij ≤ n
φ
j /t

φ
j

⇒frφ · tφj
∑
i∈N

xφij ≤ n
φ
j , ∀j, φ, (10)

that is, the total arrival rate to a pipeline should not be greater
than its available service rate.

B. Latency Model

Since the final analytic results should be collected to the
MEC stratum for further control and management, we consider
one-way delay of uplink transmission and round-trip time
(RTT) between the MEC stratum and the cloud stratum.
Besides, we ignore the transmission delay from the cloud
stratum to the MEC stratum because the final analytic results
only contain small number of data. Therefore, if the decision
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xφij = 1, the per frame analytic latency of webcam i can be
expressed as

Lφij =dφ,transik + dφ,transkj + dφ,procj

+ ϕφ(2dprogj,cld + dφ,transj,cld + dφ,proccld ), (11)

where the dφ,procj and dφ,proccld are per frame processing delay at
MEC node j and the cloud, respectively. The dφ,transik , dφ,transkj

and dφ,transj,cld are per frame transmission delay from webcam
i to BS k, from BS k to MEC node j, and from MEC node
j to the cloud, respectively. Since the cloud stratum is remote
to the edge stratum, we assume that there is a propagation
delay dprogj,cld when transmitting the packet through the backhaul
medium from MEC node j to the cloud stratum.

To satisfy the latency requirement of webcam i, we have
the following constraint

C5 : xφij(L
req
i − Lφij) ≥ 0, ∀i, j, φ. (12)

When allocating bandwidth fraction aik to webcam i, its
transmission delay to BS k will be

dφ,transik =
bφ

rik
=

bφ

aikWkγik
. (13)

The transmission delay of the shared wired link lkj can be
measured by

dφ,transkj =

∑
li′k∈Lwl

∑
φ∈Φ

xφi′jb
φ

rkj
. (14)

Similarly, the transmission delay from MEC node j to the
cloud is calculated by

dφ,transj,cld =

∑
i′∈N

∑
φ∈Φ

xφi′jb
φ
cld

rj,cld
. (15)

Recall that multiple webcams are allowed to share those
pipelines with the same configuration at a MEC node. Con-
sidering the worst case that the MEC node receives video
frames from multiple webcams almost at the same time, the
processing delay, including queuing delay and service delay,
at MEC node j could be represented by

dφ,procj = tφj

( ∑
i′∈N

xφi′j − n
φ
j

)
+ tφj . (16)

Thanks to sufficient storage and computing resources in the
cloud stratum, we assume that the analytic task from each
webcam can be processed in an individual pipeline at the
cloud. Therefore, the processing delay at the cloud will be

dφ,proccld = tφcld, (17)

which implies that there is no queuing delay.

Moreover, since the data rate of each link, i.e., wired link
or wireless link, cannot exceed its transmission capacity, we
have

C6 :
∑
j∈M

∑
φ∈Φ

xφijfr
φbφ ≤ rik, ∀lik ∈ Lwl, (18)

C7 :


I :

∑
lik∈Lwl

∑
φ∈Φ

xφijfr
φbφ ≤ rkj , ∀lkj ∈ Lwd

II :
∑
i∈N

∑
φ∈Φ

xφijfr
φbφcld ≤ rj,cld, ∀j

.

(19)

C. Utility Function

1) Cloud stratum: Once the computing provision is de-
cided, the per-second operation cost of the cloud is

Ccld = γcld
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijp
φ
cld · fr

φ, (20)

where γcld is a positive constant converting power consump-
tion to cost at the cloud. Furthermore, we define the per-second
effort of the cloud as the total GPU utilization

ecld =
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijt
φ
cldu

φ
cld · fr

φ. (21)

To motivate the cloud to the optimal computing provisioning
deployment, the MEC stratum pays π to compensate the per
unit effort [21] afforded by the cloud. Therefore, the expected
utility of the cloud will be

Ucld = Rcld − Ccld, (22)

where Rcld = πecld is the revenue.
2) MEC stratum: Accordingly, we can calculate the oper-

ation cost of the MEC stratum as follows:

Cmec = γmec
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφijp
φ
j · fr

φ, (23)

where γmec is a positive constant converting power consump-
tion to cost at a MEC node. Since the practical operation
behind the service is transparent to the IoT device, the service
fee collected from a webcam is assumed to be proportional to
its user satisfaction, i.e., detection accuracy with the latency
and accuracy requirements satisfied. We have the revenue of
the MEC stratum

Rmec =
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφij · P(qφ), (24)

where P(·) is the predefined payment function of the service
fee. Therefore, the expected utility of the MEC stratum will
be

Umec = Rmec − Cmec − Pmec, (25)

where the total service fee Pmec = Rcld.
Based on the system model, we observe that the cloud

control would like to increase π as large as possible. On the
contrary, the MEC orchestrator expects to utilize the incentive
of π to jointly deploy the optimal computing provision with the
cooperation of the cloud stratum so as to achieve more utility
than provide video analytic service alone. It motivates us to
propose a Nash bargaining between the MEC orchestrator
and the cloud controller.

V. NASH BARGAINING

The bargainging problem is a non-cooperative game to
address how the players share a surplus they have jointly gen-
erated to benefit themselves. As a basic two-player bargaining
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game used to model strategic interactions, Nash bargaining
theory [22] provides an efficient and fair solution, called Nash
bargaining solution (NBS), to balance the utilities of both
rational players.

In the proposed bargaining framework, the MEC orches-
trator and the cloud controller bargain with each other and
share a surplus when reaching an agreement. An agreement
is represented by a feasible tuple (a,x,n, π). The Nash
bargaining problem is defined as [22]

NB :

max
(Umec,Ucld)∈U

(Umec −Dmec)(Ucld −Dcld) (26)

s.t. (Umec, Ucld) ≥ (Dmec, Dcld),

where U is the feasible set of the utility pair (Umec, Ucld) over
all possible agreements. The Dmec and Dcld are the utilities of
the MEC stratum and the cloud stratum under disagreement.
Obviously, Dcld = 0 because the cloud stratum does nothing
under disagreement.

Furthermore, we define a pair of utility (U∗mec, U
∗
cld) as

a NBS which solves NB. It should be noted that the NBS
maximizes the social welfare (SW) [23], which is defined as
the aggregate utility of the MEC stratum and the cloud stratum.
Therefore, the objective is to select the optimal bandwidth
allocation a and computing provision x so as to maximize the
social welfare:

SW : max
a,x,n

W
(
a,x,n

)
= Umec + Ucld (27)

s.t. C1,C2,C3,C4,C5,C6,C7

C8 : Φ = ΦU

xφij ∈ {0, 1}, nφj ∈ {0, 1, · · · , N
φ
j } ∀i, j, φ.

According to (22)(25), the social welfare can be derived as

W
(
a,x,n

)
= W

(
x
)

=
∑
i∈N

∑
j∈M

∑
φ∈Φ

xφij

(
P(qφ)− Ωφj

)
,

(28)
where Ωφj is the total operation cost, that is,

C9 : Ωφj = (γmecp
φ
j + γcldp

φ
cld) · fr

φ, ∀j, φ. (29)

The derivation indicates that the social welfare is a linear
combination of user association decision x.

Similarly, the expected utility of the MEC stratum under the
disagreement is calculated by

Dmec = max
a,x,n

Umec (30)

s.t. C1,C2,C3,C4,C5,C6,C7

C8′ : Φ = Φmec

xφij ∈ {0, 1}, nφj ∈ {0, 1, · · · , N
φ
j } ∀i, j, φ.

Finally, the optimal tuple
(
a∗,x∗,n∗, π∗

)
of the NBS can be

derived by a∗,x∗,n∗ = arg max
a,x

W
(
a,x,n

)
π∗ = 1

2ecld

[
W
(
a∗,x∗,n∗

)
−Dmec + 2Ccld

] . (31)

VI. GBD-BASED SOCIAL WELFARE CALCULATION

We observe that the C5 is the main difficulty of SW
because: i) mixed optimization variables, i.e., binary variable
xφij , integer variable nφj , and continuous variable aik; ii)
second order terms, e.g., xφij/aik and xφijn

φ
j . That is to say,

SW is a mixed-integer nonlinear programming (MINLP) [24]
problem, which is intractable to be solved.

A. Linearization with RLT

In order to reduce the dififculty, we utilize the reformulation
linearization technique (RLT) [25] to reformulate the problem.
Firstly, to avoid divide-by-zero caused by aik, we introduce a
microscale θ added to aik and then represent aik + θ by âik.
According to C1, the auxiliary variable â = {âik,∀i, j, φ} is
constrained by

C1′ :


I : âik = θ, ∀lik /∈ Lwl
II : âik ∈ [θ, 1 + θ], ∀lik ∈ Lwl
III :

∑
i∈N

âik ≤ 1 + θ|N |, ∀k ∈ K
. (32)

Next, we adopt RTL to linearize the constraints. Let
y = {yφii′j ,∀i, i′, j, φ}, where yφii′j denotes the product term
xφijx

φ
i′j , and then the bound-factor product constraints of y can

be derived by

Ξφ,yii′j =


I : yφii′j ≤ x

φ
ij

II : yφii′j ≤ x
φ
i′j

III : yφii′j ≥ x
φ
ij + xφi′j − 1

. (33)

Similarly, let z = {zφij ,∀i, j, φ}, where zφij denotes the product
term xφijn

φ
j , therefore, the bound-factor product constraints of

z can be derived by

Ξφ,zij =


I : zφij ≥ 0

II : zφij ≤ x
φ
ijN

φ
j

III : zφij ≤ n
φ
j

IV : zφij ≥ n
φ
j − (1− xφij)N

φ
j

. (34)

So far, substituting âik, yφii′j and zφij into C5 and C6, we have

C5′ :



xφij

(
tφj + 2ϕφdprogj,cld + tφcld − L

req
i

)
+

xφijb
φ

âikWkγik

+
∑

li′k∈Lwl

∑
φ∈Φ

yφii′j
bφ

rkj

+
∑
i′∈N

∑
φ∈Φ

yφii′j
bφcld
rj,cld

+tφj
∑
i′∈N y

φ
ii′j

−tφj z
φ
ij , ∀i, j, φ


≤ 0, (35)

C6′ :
∑
j∈M

∑
φ∈Φ

xφijfr
φbφ ≤ âikWkγik, ∀lik ∈ Lwl. (36)

Finally, we reformulate the original optimization problem SW
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as

SW ′ : max
â,x,n,y,z

W (x) (37)

s.t. C1′,C2,C3,C4,C5′,C6′,C7,C8,C9

xφij ∈ {0, 1}, nφj ∈ {0, 1, · · · , N
φ
j } ∀i, j, φ

yφii′j ∈ Ξφ,yii′j , zφij ∈ Ξφ,zij ∀i, i′, j, φ.

B. Solution Using GBD

Let X represent the set of discrete variables, i.e., X =
(x,n,y, z). We leverage Generalized Benders Decomposition
(GBD) [26] to solve SW ′ optimally. The basic idea of GBD
is to decompose a MINLP problem into two subproblems, a
primal problem for linear/nonlinear programming and a master
problem for pure integer programming, and then iteratively
solve them with guaranteed convergence [24].

1) Primal problem: The primer problem SP corresponds
to SW ′ by fixing the set of discrete variables as X(ν) in each
iteration, where ν stands for the iteration counter. We integrate
the constraints C5′ and C6′ by

G
(
â,X(ν)

)
=
∑
j∈M

∑
φ∈Φ

x
φ(ν)
ij frφbφ − âikWkγik,

∀lik ∈ Lwl

âikH
(
X(ν)

)
+

x
φ(ν)
ij bφ

Wkγik
, ∀i, j, φ


D×1

, (38)

where D represents the dimension |N |+ |N ||M||Φ| and

H
(
X(ν)

)
=



x
φ(ν)
ij

(
tφj + 2ϕφdprogj,cld + tφcld − L

req
i

)
+

∑
li′k∈Lwl

∑
φ∈Φ

y
φ(ν)
ii′j

bφ

rkj

+
∑
i′∈N

∑
φ∈Φ

y
φ(ν)
ii′j

bφcld
rj,cld

+tφj
∑
i′∈N y

φ(ν)
ii′j

−tφj z
φ(ν)
ij , ∀i, j, φ


.

Specifically, we observe that âik is not in the objective function
of SW ′, which means that a standard primal problem could
not be directly constructed. Therefore, we introduce slack
variables α = [αl, l = 1, 2, · · · ,D] and a modified primal
problem can be formulated as an l1-minimization problem:

SP ′ : min
â,α

D∑
l=1

αl (39)

s.t. C1′,C8

G
(
â,X(ν)

)
≤ α

αl ≥ 0, ∀l.

In each iteration ν, we can obtain the continuous solution
âν and its associated Lagrange multipliers λ(ν) = [λ

(ν)
l , l =

1, 2, · · · ,D] by solving SP ′. In this way, a feasible solution
to the original primal problem SP can be determined if∑D
l=1 αl = 0; otherwise, SP is infeasible. Accordingly, we

let F and IF represent the sets of the iteration counter ν

Algorithm 1: GBD-Based Social Welfare Calculation
1 Initialization: UBD = +∞, LBD = −∞, F = ∅,
IF = ∅, ν = 0.

2 Select an initial feasible solution to SW ′: X(ν) = 0.
3 Solve the modified primal problem SP ′ with fixed X(ν), and

obtain optimal solution â(ν) and its associated λ(ν).
4 Update UBD = −W (x(ν)) and F = F ∪ {ν}.
5 while UBD − LBD > ε do
6 Set ν = ν + 1.
7 Solve the relaxed master problem MP , and obtain

optimal solution X(ν) and ω(ν).
8 Update LBD = ω(ν).
9 Solve the modified primal problem SP ′ with fixed X(ν),

and obtain optimal solution â(ν) and its associated
λ(ν).

10 if SP ′ is feasible then
11 Update UBD = min{UBD,−W (x(ν))}.
12 Update F = F ∪ {ν}.
13 else
14 Update IF = IF ∪ {ν}.
15 end
16 end
17 Output: the optimal solution of SW ′ = (â∗,x∗,n∗,y∗, z∗).

associated with feasible SP and infeasible SP , respectively.
Furthermore, the Lagrange function results from

ξ
(
â(ν),X,λ(ν)

)
={

−W (x) + λ(ν)TG
(
â(ν),X

)
, ν ∈ F

λ(ν)TG
(
â(ν),X

)
, ν ∈ IF

. (40)

2) Master problem: The relaxed master problem makes use
of the Lagrange multipliers obtained in the primal problem so
that an infinite number of cutting planes could be iteratively
added as constraints in order to reduce its feasible region. The
relaxed master problem is formulated as follows:

MP : min
x,n,y,z,ω

ω (41)

s.t. C2,C3,C4,C7,C8

ω ≥ ξ
(
â(ν),X,λ(ν)

)
∀ν ∈ F (42)

0 ≥ ξ
(
â(ν),X,λ(ν)

)
∀ν ∈ IF (43)

xφij ∈ {0, 1}, nφj ∈ {0, 1, · · · , N
φ
j } ∀i, j, φ

yφii′j ∈ Ξφ,yii′j , zφij ∈ Ξφ,zij ∀i, i′, j, φ.

where (42)(43) are the feasible and infeasible cuts derived
from (40) through the iterative process.

The overall description of the proposed GBD-based social
welfare calculation is shown in Algorithm 1. We observe that
Algorithm 1 requires an initial feasible solution to SW ′ so
that MP will not be unbounded by adding a feasible cut
obtained in SP ′. Obviously, X(ν) = 0 is always feasible
to SW ′. In the iterative process, the master problem MP
provides the lower bound (LBD) and the feasible modified
primer problem SP ′ regulates the upper bound (UBD). The
optimal solution X(ν) obtained from MP is fixed and used
subsequently in SP ′. The iterative process terminates when
UBD − LBD ≤ ε, where ε is the predefined convergence
tolerance. The computational complexity of Algorithm 1 is
affected by the cost of solving the modified primal problem
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TABLE III
LIST OF MEASURED CONFIGURATION PARAMETERS

Models {0, 1} pixels KB KB ms ms % % MiB %
φ Edge Cloud ϕφ rsφ bφ bφcld tφj tφcld uφj uφcld mφj qφ

1 YOLOv3-tiny + dlib null 0 300× 400 11.27 0.00 24.93 0.00 7.25 0.00 735 79.52
2 YOLOv3 + dlib null 0 300× 400 11.27 0.00 62.79 0.00 42.60 0.00 1923 83.36
3 YOLOv3 + dlib null 0 450× 600 21.29 0.00 81.86 0.00 54.40 0.00 2153 88.10
4 YOLOv3-tiny + OpenFace null 0 300× 400 11.27 0.00 30.21 0.00 6.53 0.00 801 79.18
5 YOLOv3 + OpenFace null 0 300× 400 11.27 0.00 67.26 0.00 42.10 0.00 1985 82.75
6 YOLOv3 + OpenFace null 0 450× 600 21.29 0.00 90.60 0.00 53.41 0.00 2215 90.47
7 null YOLOv3-tiny + dlib 1 300× 400 11.27 11.27 0.00 25.22 0.00 2.44 0 79.52
8 null YOLOv3 + dlib 1 300× 400 11.27 11.27 0.00 40.93 0.00 11.88 0 83.36
9 null YOLOv3 + dlib 1 450× 600 21.29 21.29 0.00 55.85 0.00 14.31 0 88.10
10 null YOLOv3 + dlib 1 600× 800 41.08 41.08 0.00 78.04 0.00 21.04 0 91.86
11 null YOLOv3-tiny + OpenFace 1 300× 400 11.27 11.27 0.00 38.11 0.00 2.38 0 79.18
12 null YOLOv3 + OpenFace 1 300× 400 11.27 11.27 0.00 51.15 0.00 11.83 0 82.75
13 null YOLOv3 + OpenFace 1 450× 600 21.29 21.29 0.00 75.10 0.00 14.40 0 90.47
14 null YOLOv3 + OpenFace 1 600× 800 41.08 41.08 0.00 109.80 0.00 21.03 0 92.49
15 null YOLOv3-tiny + FaceNet 1 300× 400 11.27 11.27 0.00 55.06 0.00 12.10 0 83.48
16 null YOLOv3 + FaceNet 1 300× 400 11.27 11.27 0.00 69.19 0.00 22.33 0 87.19
17 null YOLOv3 + FaceNet 1 450× 600 21.29 21.29 0.00 88.23 0.00 32.39 0 90.50
18 null YOLOv3 + FaceNet 1 600× 800 41.08 41.08 0.00 113.45 0.00 46.60 0 94.12
19 YOLOv3-tiny dlib 1 300× 400 11.27 3.34 19.69 7.43 5.97 0.78 455 79.52
20 YOLOv3 dlib 1 300× 400 11.27 3.95 55.80 11.40 41.55 0.79 1639 83.36
21 YOLOv3 dlib 1 450× 600 21.29 6.43 69.00 21.08 53.59 0.91 1869 88.10
22 YOLOv3 dlib 1 600× 800 41.08 10.91 98.16 34.38 80.72 0.97 2561 91.86
23 YOLOv3-tiny OpenFace 1 300× 400 11.27 3.34 19.69 20.31 5.97 0.72 455 79.18
24 YOLOv3 OpenFace 1 300× 400 11.27 3.95 55.80 21.62 41.55 0.73 1639 82.75
25 YOLOv3 OpenFace 1 450× 600 21.29 6.43 69.00 40.33 53.59 0.82 1869 90.47
26 YOLOv3 OpenFace 1 600× 800 41.08 10.91 98.16 66.15 80.72 0.85 2561 92.49
27 YOLOv3-tiny FaceNet 1 300× 400 11.27 3.34 19.69 37.26 5.97 9.62 455 83.48
28 YOLOv3 FaceNet 1 300× 400 11.27 3.95 55.80 39.66 41.55 10.05 1639 87.19
29 YOLOv3 FaceNet 1 450× 600 21.29 6.43 69.00 53.46 53.59 16.11 1869 90.50
30 YOLOv3 FaceNet 1 600× 800 41.08 10.91 98.16 69.80 80.72 23.35 2561 94.12

Hints: Highlight rows with gray are selected configurations for numerical simulations

SP ′ and the relaxed master problem MP . Specifically, the
computational complexity is dominated by the problem MP ,
which could be solved via standard techniques, such as branch-
and-bound (BB) or cutting planes. We assume that Algorithm
1 stops in K iterations, then K nonlinear programming (NLP)
and K integer linear programming (ILP) are required to
achieve the optimal solution. It should be noted that Algorithm
1 does not change the NP-hard property of the MINLP.
Therefore, Algorithm 1 in the worst case may converge in
an exponential number of iterations. Nevertheless, we provide
the execution time of Algorithm 1 in the following evaluations
to verify its efficiency in practice.

So far, the optimal social welfare can be calculated by
Algorithm 1. Similarly, we solve the optimal disagreement
utility Dmec using Algorithm 1 by replacing C8 with C8′ and
optimizing Umec instead of W

(
a,x,n

)
. Finally, we obtain the

optimal tuple
(
a∗,x∗,n∗, π∗

)
of the proposed Nash bargaining

by (31).

VII. EVALUATION RESULTS

In this section, in order to evaluate the performance of the
proposed DICE-IoT system, we implement a video analytic
application on a real testbed as an example with the decom-
posable inference pipeline consisting of object detection and
face recognition.

A. Parameter Measurement in Testbed

As shown in Fig. 3, we set up an experimental testbed,
where either YOLOv3 [10] or its lightweight version YOLOv3-
tiny is applied to object detection with adjustable resolution

YOLOv3 

Haar 

Hog Dlib 

Dlib Dlib 

FaceNet 

FaceNet Mtcnn 

Object Detection (OD) 

Face Detection Face Alignment Face Recognition 

ChokePoint Dataset 

Resize & encode 

Face Recognition (FR) 

Dlib 

OpenFace 

FaceNet 

Input Size YOLO Model 

300 x 400 YOLOv3-tiny-416 

300 x 400 YOLOv3-416 

450 x 600 YOLOv3-512 

600 x 800 YOLOv3-608 

Fig. 3. Decomposable inference pipeline in the testbed.

of original video frames as input. The cropped face of any
detected person is further pushed into face recognition by one
of dlib [27], OpenFace [28], and FaceNet [11]. ChokePoint
Dataset [29] is used as the inference input, which contains
sequences of surveillance frames captured in the real world.
The inference accuracy is defined as the weighted sum of both
human detection quality calculated by Intersection over Union
(IoU) and face recognition quality in F1 score. The relative
weight is set to be 0.5.

To measure the parameters in Table II, the edge node
equipped with an individual GPU instance, i.e., GeForce GTX
1060, is deployed over Openstack infrastructure. The cloud
server is realized by Google Cloud Platform service, which
provides multiple Tesla V100 GPU instances. It should be
noted that even Raspberry Pi 3 Model B [30] can be an
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TABLE IV
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
# of BS |K|, MEC nodes |M| 4, 4
Path loss model 34 + 40 log(dist.) dB
Log-normal shadowing 8 dB
Frequency bandwidth, Wk unif(10, 20) MHz
Transmission power of webcams, ρi 23 dBm
The power of noise, σ2

k −174 dBm/Hz
Propagation delay to cloud, dprogj,cld 20 ms
Frame sampling rate, frφ 10
Backhaul capacity:

i) BS to MEC node, rkj 100 Mbps
ii) MEC node to the cloud, rj,cld 50 Mbps

Power consumption to cost:
i) At a MEC node, γmec 2.3874
ii) At the cloud, γcld 4.9613

Latency requirement, Lreqi unif(50, 200) ms
Accuracy requirement, Qreqi unif(0.75, 0.92)
Available GPU utilization, uavlj unif(0.5, 1)
Available GPU memory, mavl

j unif(1000, 3000) MiB
Convergence tolerance, ε 0.01
Microscale, θ 10−4

Hints: unif = uniform distribution

alternative to execute live video analytics, however, it is not
suitable to play the role of an edge computing due to the
limited computing capacities and memory resources. As shown
in Table III, we list 30 kinds of configurations that place the
object detection and face recognition models in three different
schemes, respectively: 1) Edge Only: the inference pipeline
is completely executed at the MEC stratum; 2) Cloud Only:
the inference pipeline is completely executed at the cloud
stratum; 3) Cloud-Edge: the inference pipeline is decomposed
to both the MEC stratum and cloud stratum. From a large
offline empirical analysis, the parameters of configurations
are measured in Table III. Moreover, we measure the power
consumption of GeForce GTX 1060 and Tesla V100 in idle
state, that is, pidlej is 9.15W and pidlecld is 25.95W. According to
their datasheets, the maximum power consumption pmaxj and
pmaxcld are 120W and 250W, respectively. Then, the per-frame
power consumption pφj and pφcld can be calculated by (3).

B. Numerical Simulations
Based on the measured parameters in Table III, we evaluate

the DICE-IoT system through simulations. We consider that
|K| BSs are located in grid topology within an 800m×800m
square area, that is, each BS is located in the center of a
small square grid. At the MEC stratum, we deploy |M| MEC
nodes and each BS is allowed to randomly access to at most 2
MEC nodes. Total |N | webcams are randomly and uniformly
distributed within the range and each of them connects to its
nearest BS. The key simulation parameters by default are list in
Table IV. The modified primal problem SW ′ and the relaxed
master problem MP are solved by the solver GUROBI [31]
via YALMIP [32] on an Intel Core i7 3.6 GHz processor
with 16 GB RAM. Specifically, cutting plane technique is
adopted in YALMIP to solve the relaxed master problem
MP . All evaluation results are presented for one-hour analytic
services. We compare six approaches: 1) Proposed-DICE, 2)
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Fig. 4. Configuration Tradeoff Analysis.
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Fig. 5. Performance versus available GPU memory: |N | = 12, uavlj = 1,
Lreqi = 200ms.

Proposed-Edge, 3) Dedicated-DICE 4) Dedicated-Edge, 5)
Greedy, and 6) VideoEdge, where the “DICE” and “Edge” rep-
resent the proposed DICE-IoT framework and the Edge Only
system, respectively. Compared with the Proposed framework,
the proposed pipeline sharing mechanism is disabled in the
Dedicated approach, that is, each webcam is served by a
dedicated pipeline. The Greedy adopts latency-aware heuristic
instead of the GBD-based approach under the proposed DICE-
IoT framework. More specifically, Greedy gives priority to
determine service deployment to the webcam who has higher
latency requirement, i.e., lower Lreqi , until no more webcams
could be added. VideoEdge is the state-of-the-art framework
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Fig. 6. Performance versus latency requirement: |N | = 12.
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Fig. 7. Performance versus accuracy requirement: |N | = 12.

[16] using a greedy heuristic approach. Recall that VideoEdge
doesn’t consider the wireless network links as well as the
latency of the analytic task. Therefore, we iteratively perform
bandwidth allocation according to the results of VideoEdge by
utilizing the proposed SP ′ and each time an active webcam
with unsatisfied serving delay is changed into inactive until
the delay requirements of all active webcams are satisfied. It
is noted that the NBS is not held in either Greedy or VideoEdge
since they could not achieve the optimal solution.

The extensive simulation results are provided as follows:
1) Configuration: We first present the tradeoff analysis

among different configurations in the computing aspect, as
shown in Fig. 4. We observe that both the processing time and
the operation costs increase as the accuracy grows. Specifi-
cally, Cloud Only scheme achieves less processing time but
requires more operation costs. Besides, Edge Only scheme
could not provide high accuracy service since the edge node is
not as powerful as the cloud. We define the payment function
P(qφ) as an accuracy-cost curve plus fixed 0.2 vertical offset,
where the curve is constructed by those envelope points using
polynomial curve fitting (See red dotted curve in Fig. 4(b)). We
find out that some configurations are dominated by others in
both processing time and operation costs, therefore, we select
3 configurations for each scheme (See highlight rows with
gray in Table III) in the following simulations.

2) Available GPU memory: We assign all MEC nodes with
the same available GPU memory, i.e., mavl

j , and illustrate
the performance versus available GPU memory, which is the
key limitation to the capacity of DL-based video analytic
services. In Fig. 5, a total of 30 independent simulations
is performed and then presented by a boxplot. The serving
ratio is defined as the ratio of active webcams successfully
served by the framework over the total number. The serving

latency is the actual service delay that the active webcams
will suffer from. As shown in Fig. 5, generally the serving
ratio increases and latency decreases against the available GPU
memory. Besides, in Fig. 5(a), we observe that Proposed-DICE
can serve more webcams than Proposed-Edge thanks to the
cooperative computing provision with the cloud. However, as
shown in Fig. 5(b), Proposed-DICE results in higher service
latency compared with Proposed-Edge because: on the one
hand, task offloaded to the remote cloud introduces additional
wired transmission delay and long-distance propagation delay;
on the other hand, more active webcams in Proposed-DICE
share the limited wireless link bandwidth, wired link capaci-
ties, as well as the computing resources of the MEC stratum.
Nevertheless, the serving latency of the active webcams in
Proposed-DICE never exceeds 200ms maximum tolerance.

3) Latency requirement: In Fig. 6, we adjust the latency
requirement of all webcams, i.e., Lreqi , and demonstrate the
performance versus latency requirement. Intuitively, the social
welfare increases as the relaxation of the latency tolerance
in Fig 6(a). Specifically, the social welfare under either
Proposed-Edge or Dedicated-Edge is not always increasing
due to the limited resources at the MEC stratum. Due to the
proposed pipeline sharing mechanism, Proposed-DICE and
Proposed-Edge outperforms Dedicated-DICE and Dedicated-
Edge, respectively. We also observe that the social welfare of
VideoEdge is sensitive to the latency requirement since the
latency is not considered in this approach. Besides, the active
proportion of Proposed-DICE is shown in Fig. 6(b). As the
latency requirement grows, we find out that the total number
of active webcams increases and meanwhile the system prefers
to serve active webcams by either Cloud Only or Cloud-Edge
instead of Edge Only. That is because Cloud Only and Cloud-
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Fig. 8. Performance versus the number of webcams.

Edge not only save resource usage at the MEC stratum but
also support higher accuracy analytic services. In Fig. 6(c), the
average GPU memory usage is calculated by the total GPU
memory usage at the MEC stratum over the total number of
active webcams. The results in Fig. 6(c) confirm that both
the proposed pipeline sharing mechanism and the cooperative
computing provision can reduce the GPU memory usage at
the MEC stratum.

4) Accuracy requirement: Similarly, we adjust the accuracy
requirement of all webcams, i.e., Qreqi , and the performance
versus accuracy requirement is shown in Fig. 7. The resource-
quality tradeoff exposes that high accuracy requirement leads
to more resource consumption and larger processing time.
Therefore, the social welfare, as well as the number of
active webcams, decreases against the accuracy requirement
in Fig. 7(a) and Fig. 7(b). Nevertheless, both Proposed-
DICE and Dedicated-DICE can achieve larger social welfare
than Proposed-Edge and Dedicated-Edge under high accuracy
requirement. In Fig. 7(b), we observe that Edge Only could
not support high accuracy video analytics and Cloud-Edge has
an advantage over Edge Only at this time. Besides, when the
accuracy requirement is higher than 0.8, the average GPU
memory usage of the MEC stratum can be greatly reduced
with the assistance of the cloud stratum and further utilized to
other applications, as shown in Fig. 7(c).

5) The number of webcams: Finally, we discuss the perfor-
mance versus the number of webcams in Fig. 8. In general, the
social welfare, the utility of the MEC stratum, the utility of the
cloud stratum increase as the number of webcams grows, as
shown in Fig. 8(a), Fig. 8(d) and Fig. 8(e). On the contrary, the
serving ratio decreases in Fig. 8(b). The results in Fig. 8(a)
and Fig. 8(b) show that the social welfare and the serving
ratio of VideoEdge are even worse than Edge Only scheme
because the latency of the analytic task is not considered
and those active webcams in VideoEdge may still fail to be

served by the framework due to the unsatisfied serving delay.
Specifically, we observe from Fig. 8(b), Fig. 8(d) and Fig.
8(e) that the NBS provides a win-win-win solution to the
IoT device, the MEC, and the cloud stratums thanks to the
cooperative computing provision. That is, compared with Edge
Only (non-cooperative) scheme, the proposed decomposable
cloud-edge framework can provide more service opportunities
to those IoT devices and meanwhile increase the utilities of
both the MEC and the cloud stratums. Moreover, the proposed
pipeline sharing mechanism also improves performance by
comparing Proposed-DICE/Proposed-Edge with Dedicated-
DICE/Dedicated-Edge. Under the agreement of the proposed
Nash bargaining, the price to the cloud to compensate its per
unit effort, i.e., π, is shown in Fig. 8(f), where the negotiated
price decreases against the number of webcams. According
to the NBS in (31), the reason is that the cloud stratum
distributes a lot of effort as the number of webcams increases
but the social welfare is improved little. Moreover, we show in
Fig. 8(c) that the proposed GBD-based approach can greatly
reduces the execution time compared with Greedy.

VIII. CONCLUSION

In this paper, we propose a DICE-IoT framework for live
video analytics with joint latency and accuracy awareness.
We provide a Nash bargaining between the MEC and the
cloud to incentivize cooperative computing provision. A GBD-
based approach is furthered utilized to optimize social welfare.
We evaluate and discuss the key factors affecting system
performance. The results show that the proposed intelligence
framework can achieve a win-win-win solution to the IoT
device, the MEC, and the cloud stratums. Thanks to the
proposed pipeline sharing mechanism, the proposed frame-
work outperforms other approaches in terms of social welfare,
serving ratio, and GPU memory usage reduction. Moreover, it
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is noted that the proposed DICE-IoT framework is not limited
to live video analytic applications, which could be further
applied to general cloud-edge IoT framework subject to both
latency and accuracy requirements after some modifications.
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